

COORDINATES SYSTEM Part 2

To find the equation of a line:

a point

Slope

Case 1

Equation of a line of slope a and passes through a point $A(x_A; y_A)$:

General form: $y - y_A = a(x - x_A)$

$$a = 2$$
; $A(1; 2)$
 $y - y_A = a(x - x_A)$
 $y - 2 = 2(x - 1)$
 $y - 2 = 2x - 2$
 $y = 2x - 2 + 2$
 $y = 2x$

BSA BE SMART ACADEMY

Equation of a line that passes through points $A(x_A; y_A)$ and $B(x_B; y_B)$:

Step 1: Calculate the slope:
$$a = \frac{y_A - y_B}{x_A - x_B}$$

Step 2: General form:
$$y - y_A = a(x - x_A)$$
 or $y - y_B = a(x - x_B)$

$$A(1; 2)$$
; $B(3; 4)$
 $a = \frac{y_A - y_B}{x_A - x_B} = \frac{2 - 4}{1 - 3} = -\frac{2}{-2} = 1$
 $y - y_A = a(x - x_A)$
 $y - 2 = 1(x - 1)$
 $y - 2 = x - 1$
 $y = x - 1 + 2$ so $y = x + 1$

Equation of a line that passes through points $A(x_A; y_A)$ and parallel to a line (d'):

Step 1: Find the slope: $a = a_{(d')}$

General form: $y - y_A = a(x - x_A)$

$$A(1; 2)$$
; (d'): $y = 2x + 3$
 $a = a_{(d')} = 2$
 $y - y_A = a(x - x_A)$
 $y - 2 = 2(x - 1)$
 $y - 2 = 2x - 2$
 $y = 2x - 2 + 2$ so $y = 2x$

Equation of a line that passes through points $A(x_A; y_A)$ and perpendicular to a line (d'):

Step 1: Find the slope:
$$a \times a_{(d')} = -1$$
; $a = -\frac{1}{a_{(d')}}$

General form: $y - y_A = a(x - x_A)$

$$A(1; 2)$$
; (d'): $y = 2x + 3$
 $a \times a_{(d')} = -1$; $a \times 2 = -1$; $a = -\frac{1}{2}$
 $y - y_A = a(x - x_A)$
 $y - 2 = -\frac{1}{2}(x - 1)$
 $y - 2 = \frac{1}{2}x + \frac{1}{2}$

© Equation of a line (Particular cases)

If the line passes through the origin, then the equation is y = ax

Example 1:

slope a = 2 and passes through O

The equation is y = ax

So
$$y = 2x$$

Example 2:

Equation of (AO) where A(1;2)

The equation is y = ax

$$a = \frac{y_A}{x_A} = \frac{2}{1} = 2$$

So the equation is y = 2x

© Equation of a line (Particular cases)

If the line passes through A and B where $x_A = x_B$

$$x_A = x_B = k$$

So the line is parallel to (y'y) and of equation x = k

Example:

A(1;3) and B(1;-1)

$$x_A = x_B = 1$$

So the equation is x = 1

Remark:

The equation of (y'y) is x = 0

© Equation of a line (Particular cases)

If the line passes through A and B where $y_A = y_B$

$$y_A = y_B = k$$

So the line is parallel to (x'x) and of equation y = k

Example:

A(1;3) and B(2;3)

$$y_A = y_B = 3$$

So the equation is y = 3

Remark:

The equation of (x'x) is y = 0

→ Application #1

Find the equation of the line (d) in each case:

1 (d) passes through the origin and parallel to the line (d') y = -x + 2.

General form: y = ax(d)//(d') so $a = a_{(d')} = -1$ So the equation of (d) is y = -x

⇔Application #1

Find the equation of the line (d) in each case:

2 (d) passes through the points A(-1;3) and B(-2;0).

General form:
$$y - y_B = a(x - x_B)$$

$$a = \frac{y_A - y_B}{x_A - x_B} = \frac{3 - 0}{-1 - (-2)} = \frac{3}{-1 + 2} = 3$$

$$y - 0 = 3(x + 2)$$

$$y = 3x + 6$$

→ Application #1

Find the equation of the line (d) in each case:

- 3 (d) is perpendicular to (x'x) and passes through A(-1;3)
 - (d) \perp ($\chi'\chi$)
 - So, (d) // (y'y)

Then the equation of (d) is x = k

- (d) Passes through A so $x_A = k$; -1 = k
- So the equation of (d) is x = -1

→ Application #1

Find the equation of the line (d) in each case:

(d) is the perpendicular bisector of [AB] where A(1;1) and B(-1;3)

(d)
$$\perp$$
 (AB) so $a \times a_{(AB)} = -1$
 $a_{(AB)} = \frac{y_A - y_B}{x_A - x_B} = \frac{1 - 3}{1 - (-1)} = -\frac{2}{2} = -1$
So $a = -\frac{1}{a_{(AB)}} = \frac{-1}{-1} = 1$

(d) Passes through M the midpoint of [AB].

$$x_{M} = \frac{x_{A} + x_{B}}{2} = \frac{1 - 1}{2} = 0 \text{ and } y_{M} = \frac{y_{A} + y_{B}}{2} = \frac{1 + 3}{2} = \frac{4}{2} = 2$$

$$y - y_{M} = a(x - x_{M})$$

$$y - 2 = 1(x - 0)$$

$$y - 2 = x$$

$$y = x + 2$$

Plotting a line

BSA BE SMART ACADEMY

1 Plot a line of equation x = k.

Just draw a line parallel to (y'y), perpendicular to (x'x), at the

corresponding abscissa.

Example:

Draw the line of equation x = 2.

Plotting a line

BSA BE SMART ACADEMY

2 Plot a line of equation y = k.

Just draw a line parallel to (x'x), perpendicular to (y'y), at the

corresponding ordinate.

Example:

Draw the line of equation y=2.

Plotting a line

3 Plot a line in the form of y = ax + b2 points are needed:

Take two values of x (of y) and substitute each one in the equation of the line to get the ordinates (abscissas) of the two points.

Example:

Draw the line of equation y = 2x + 1.

For
$$x = 0$$
; $y = 2(0) + 1 = 1$

So (0;1)

For
$$x = 1$$
; $y = 2(1) + 1 = 3$

So (1;3)

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0,7). Let (d) be the line with equation y = 2x - 3.

1) Plot the points A and B.

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0,7). Let (d) be the line with equation y = 2x - 3.

2) Verify that the point A is on (d).

$$2x_A - 3 = 2(4) - 3 = 8 - 3 = 5 = y_A$$

So A is on (d)

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0;7). Let (d) be the line with equation y = 2x - 3.

3) Determine the coordinates of the point E, the intersection of (d) with (y'y).

For
$$x = 0$$
; $y = 2(0) - 3 = -3$
So E(0;-3)

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0;7). Let (d) be the line with equation y = 2x - 3.

4) Draw (d).

Remark:

To draw the line (d), 2 points are needed.

First point is A. Second point is E

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0,7). Let (d) be the line with equation y = 2x - 3.

5) Verify that the equation of the line (AB)

is
$$y = -\frac{1}{2}x + 7$$
.

First method:

$$-\frac{1}{2}x_A + 7 = -\frac{1}{2}(4) + 7 = 5 = y_A$$

So the coordinates of A verify the equation.

$$-\frac{1}{2}x_B + 7 = -\frac{1}{2}(0) + 7 = 7 = y_B$$

So the coordinates of B verify the equation.

Then the equation of (AB) is $y = -\frac{1}{2}x + 7$

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5)and B(0;7). Let (d) be the line with equation y = 2x - 3.

5) Verify that the equation of the line (AB)

is
$$y = -\frac{1}{2}x + 7$$
.

Second method:

Slope
$$a = \frac{y_A - y_B}{x_A - x_B} = \frac{5 - 7}{4 - 0} = -\frac{1}{2}$$

General form: $y - y_B = a(x - x_B)$

$$y - 7 = -\frac{1}{2}(x - 0)$$
$$y - 7 = -\frac{1}{2}x$$

$$y - 7 = -\frac{1}{2}x$$

$$y = -\frac{1}{2}x + 7$$

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0,7). Let (d) be the line with equation y = 2x - 3.

6) Prove that (AB) is perpendicular to (d).

(AB):
$$y = -\frac{1}{2}x + 7$$

 $a_{(AB)} \times a_{(d)} = -\frac{1}{2} \times 2 = -1$
So (AB) and (d) are perpendicular.

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0,7). Let (d) be the line with equation y = 2x - 3.

7) Let J be the center of the circle (C) circumscribed about the triangle ABE. Show that the coordinates of J are (0;2).

J is the midpoint of [EB]:

$$x_J = \frac{x_B + x_E}{2} = \frac{0+0}{2} = 0$$
 $y_J = \frac{y_B + y_E}{2} = \frac{7-3}{2} = 2$
So J(0;2)

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0;7). Let (d) be the line with equation y = 2x - 3.

8) Calculate the radius of (C).

Radius R=JB

J(0;2)

$$R = \sqrt{(x_B - x_J)^2 + (y_B - y_J)^2}$$

$$= \sqrt{(0 - 0)^2 + (7 - 2)^2}$$

$$= 5$$

In an orthonormal system pf axes (x'Ox;y'Oy), consider the two points A(4,5) and B(0,7). Let (d) be the line with equation y = 2x - 3.

9) Determine the coordinates of the point F such that the quadrilateral EABF is a rectangle.

EABF is a rectangle, so the diagonal bisect each other.

J is the midpoint of [EB] so J is the midpoint of [AF].

$$x_F = 2x_J - x_A = 2(0) - 4 = -4$$

 $y_F = 2y_J - y_A = 2(2) - 5 = 4 - 5 = -1$
So F(-4;-1)

